CHAPTER

12

LARGE COMPUTER SYSTEMS

CHAPTER OBJECTIVES

In this chapter you will learn about:

¢ Large computer systems that consist of multiple processors, or
multiple computers

» Different structures for implementing multiprocessors

» Interconnection networks and LANs

* Memory organization in multiprocessors

+ Cache coherence for shared data

» Shared-memory and message-passing paradigms

e Performance issues in multiprocessor systems

617

618

CHAPTER 12 ¢ LARGE COMPUTER SYSTEMS

When a computer application requires a very large amount of computation to be com-
pleted in a reasonable amount of time. we must use machines with correspondingly
large computing capacity. Such machines are often called supercomputers. Typical
applications that require supercomputers include weather forecasting, finite element
analysis in structural design, fluid flow analysis, simulation of large complex physi-
cal systems. and computer-aided design (CAD). None of the machines discussed in
previous chapters are in the supercomputer class.

A high-performance processor can be designed using fast circuit technology and
architectural features such as multiple functional units, pipelining, large caches. inter-
leaved main memory, and separate buses for instructions and data. All these possibilities
are exploited in ongoing research and development efforts by many manufacturers to
produce processors intended primarily for use in workstations. Their quest is to increase
performance without substantially increasing cost, and the results have been spectacu-
lar — we now have workstations that outperform machines that were considered to be
in the supercomputer class only a decade ago.

However, many applications still demand computing power that greatly exceeds the
capability of workstations. Thus, the need for supercomputing power remains strong.
One approach is to build a supercomputer that has only a few very powerful processing
units. This is typically done by using the fastest possible circuits, wide paths for ac-
cessing a large main memory, and extensive I/O capability. Such computers dissipate
considerable power and require expensive cooling arrangements. In computationally
demanding applications, supercomputers are needed to handle vectors of data, where a
vector is a linear array of numbers (elements), as efficiently as possible. Single opera-
tions are often performed on entire vectors. For example, an add operation may generate
a vector that is the element-by-element sum of two 64-element vectors. Also, a single
memory access operation can cause an entire vector to be transferred between the main
memory and processor registers. If an application is conducive to vector processing,
then computers that feature a vector architecture provide excellent performance. Super-
computers of this class have been marketed by companies such as Cray (Cray-1, Y-MP,
and SV1), Fujitsu (VP5000), Hitachi (SR8000), and NEC (SX-5). The main drawback
of such machines has been their high cost — both the purchase price and the operating
and maintenance cost.

An attractive alternative for providing supercomputing power is to use a large
number of processors designed for the workstation market. This can be done in two basic
ways. The first possibility is to build a machine that includes an efficient high-bandwidth
medium for communication among the multiple processors, memory modules, and
I/O devices. Such machines are usually referred to as multiprocessors. The second
possibility is to implement a system using many workstations connected by a local area
communication network. Systems of this type are often called distributed computer
systems. Multiprocessors and distributed computer systems have many similarities.
The former offer superior performance but at a higher price. The latter are naturally
available in a modern computing environment at low cost. In the remainder of this
chapter, we discuss the salient characteristics of each of these types. They provide large
computing capabilities at a reasonable cost.

A system that uses many processors derives its high performance from the fact
that many computations can proceed in parallel. The difficulty in using such a system

12.1 FORMS OF PARALLEL PROCESSING

efficiently is that it may not be easy to break an application down into small tasks
that can be assigned to individual processors for simultaneous execution. Determining
these tasks and then scheduling and coordinating their execution in multiple processors
requires sophisticated software and hardware techniques. We consider these issues later
in the chapter.

12.1 FORMS OF PARALLEL PROCESSING

Many opportunities are available for parts of a given computational task to be executed
in parallel. We have already seen several of them in earlier chapters. For example. in
handling I/0 operations. most computer systems have hardware that performs direct
memory access (DMA) between an 1/0 device and main memory. The transfer of data
in either direction between the main memory and a magnetic disk can be accomplished
under the direction of a DMA controller that operates in parallel with the processor.

When a block of data is to be transferred from disk to main memory, the processor
initiates the transter by sending instructions to the DMA controller. While the controller
transfers the required data using cycle stealing. the processor continues to perform some
computation that is unrelated to the data transfer. When the controller completes the
wransfer. it sends an interrupt request to the processor to signal that the requested data
are available in the main memory. In response. the processor switches to a computation
that uses the data.

This simple example illustrates two fundamental aspects of parallel processing.
First. the overall task has the property that some of its subtasks can be done in parallel
by different hardware components. In this example. a processor computation and an
1/0 transter are performed in parallel by the processor and the DMA controller. Second,
some means must exist for initiating and coordinating the parallel activity. Initiation
occurs when the processor sets up the DMA transfer and then continues with another
computation. When the transfer is completed, the coordination is achieved by the in-
terrupt signal sent from the DMA controller to the processor. This allows the processor
1o begin the computation that operates on the transterred data.

The preceding example illustrates a simple case of parallelism involving only
two tasks. In general, large computations can be divided into many parts that can be
performed in parallel. Several hardware structures can be used to support such parallel
computations.

12.1.1 CLASSIFICATION OF PARALLEL STRUCTURES

A general classification of parallel processing has been proposed by Flynn [1]. In this
classification. a single-processor computer system is called a Single Instruction stream,
Single Data stream (SISD) system. A program executed by the processor constitutes the
single instruction stream. and the sequence of data items that it operates on constitutes
the single data stream. In the second scheme. a single stream of instructions is broadcast
to a number of processors. Each processor operates on its own data. This scheme.

619

620

CHAPTER 12 « LARGE COMPUTER SYSTEMS

in which all processors execute the same program but operate on different data, is
called a Single Instruction stream, Multiple Data stream (SIMD) system. The multiple
data streams are the sequences of data items accessed by the individual processors in
their own memories. The third scheme involves a number of independent processors,
each executing a different program and accessing its own sequence of data items.
Such machines are called Multiple Instruction stream, Multiple Data stream (MIMD)
systems. The fourth possibility is a Multiple Instruction stream, Single Data stream
(MISD) system. In such a system, a common data structure is manipulated by separate
processors, each executing a different program. This form of computation does not
occur often in practice. so it is not pursued here.

This chapter concentrates on MIMD structures because they are most useful for
general purposes. However. we first briefly consider the SIMD structure to illustrate
the kind of applications for which it is well-suited.

12.2 ARRAY PROCESSORS

The SIMD form of parallel processing, also called array processing, was the first form
of parallel processing to be studied and implemented. In the early 1970s, a system
named ILLIAC-IV [2] was designed at the University of Illinois using this approach
and was later built by Burroughs Corporation. Figure 12.1 illustrates the structure of an
array processor. A two-dimensional grid of processing elements executes an instruction
stream that is broadcast from a central control processor. As each instruction is broad-
cast, all elements execute it simultaneously. Each processing element is connected to

Control

processor i 3 .
.

Broadcast
instructions

Grid of

processing elements

Figure 12.1 An array processor.

12.2 ARRAY PROCESSORS

its four nearest neighbors for purposes of exchanging data. End-around connections
may be provided in both rows and columns, but they are not shown in the figure.

Let us consider a specific computation in order to understand the capabilities of
the SIMD architecture. The grid of processing elements can be used to solve two-
dimensional problems. For example, if each element of the grid represents a point in
space, the array can be used to compute the temperature at points in the interior of a con-
ducting plane. Assume that the edges of the plane are held at some fixed temperatures.
An approximate solution at the discrete points represented by the processing elements
is derived as follows. The outer edges are initialized to the specified temperatures. All
interior points are initialized to arbitrary values, not necessarily the same. Iterations are
then executed in parallel at each element. Each iteration consists of calculating an im-
proved estimate of the temperature at a point by averaging the current values of its four
nearest neighbors. The process stops when changes in the estimates during successive
iterations are less than some predefined small quantity.

The capability needed in the array processor to perform such calculations is quite
simple. Each element must be able to exchange values with each of its neighbors over the
paths shown in the figure. Each processing element has a few registers and some local
memory to store data. It also has aregister, which we can call the network register, that fa-
cilitates movement of values to and from its neighbors. The central processor can broad-
cast an instruction to shift the values in the network registers one step up, down, left, or
right. Each processing element also contains an ALU to execute arithmetic instructions
broadcast by the control processor. Using these basic facilities, a sequence of instruc-
tions can be broadcast repeatedly to implement the iterative loop. The control processor
must be able to determine when each of the processing elements has developed its com-
ponent of the temperature to the required accuracy. To do this, each element sets an inter-
nal status bit to 1 to indicate this condition. The grid interconnections include a facility
that allows the controller to detect when all status bits are set at the end of an iteration.

An interesting question with respect to array processors is whether it is better to
use a relatively small number of powerful processors or a large number of very simple
processors. ILLIAC-1V is an example of the former choice. Its 64 processors had a
64-bit internal structure. Array processors introduced in the late 1980s are examples of
the latter choice. The CM-2 machine produced by the Thinking Machines Corporation
could accommodate up to 65,536 processors, but each processor is only one bit wide.
Maspar’s MP-1216 has a maximum of 16,384 processors that are 4 bits wide. The
Cambridge Parallel Processing Gamma II Plus machines can have up to 4096 proces-
sors that can operate on either byte-sized or bit-sized operands. These choices reflect
the belief that, in the SIMD environment, it is more useful to have a high degree of
parallelism rather than to have fewer but more powerful processors.

Array processors are highly specialized machines. They are well-suited to nu-
merical problems that can be expressed in matrix or vector format. Recall that super-
computers with a vector architecture are also suitable for solving such problems. A
key difference between vector-based machines and array processors is that the former
achieve high performance through heavy use of pipelining, whereas the latter provide
extensive parallelism by replication of computing modules. Neither array processors
nor vector-based machines are particularly useful in speeding up general computations,
and they do not have a large commercial market.

621

622

CHAPTER 12 + LARGE COMPUTER SYSTEMS

12.3 THE STRUCTURE OF GENERAL-PURPOSE
MULTIPROCESSORS

The array processor architecture described in the preceding section is a design for a
computer system that corresponds directly to a class of computational problems that
exhibit an obvious form of data parallelism. In more general cases in which parallelism
is not so obvious. it is useful to have an MIMD architecture. which involves a number
of processors capable of independently executing different routines in parallel.
Figures 12.2.12.3. and 12.4 show three possible ways of implementing a multipro-
cessor system. The most obvious scheme is given in Figure 12.2. An interconnection
nenwork permits n processors to access A memories so that any of the processors can
access any of the memories. The interconnection network may introduce considerable
delay between a processor and a memory. If this delay is the same for all accesses
to memory. which is common for this organization. then such a machine is called

Processors

Interconnection network

Memories

Figure 12.2 A UMA multiprocessor.

Pl ™, P | M, S P, | M

Interconnection network

Figure 12.3 A NUMA multiprocessor.

12.3 THE STRUCTURE OF GENERAL-PURPOSE MULTIPROCESSORS

M, M, M,
]) .. }

| J

P, P, P,

Interconnection network

Figure 12.4 A distributed memory system.

a Uniform Memory Access (UMA) multiprocessor. Because of the extremely short
instruction execution times achievable by processors. the network delay in fetching
instructions and data from the memories is unacceptable if it is too long. Unfortu-
nately. interconnection networks with very short delays are costly and complex to
implement.

An attractive alternative. which allows a high computation rate to be sustained
in all processors. is to attach the memory modules directly to the processors. This
organization is shown in Figure 12.3. In addition to accessing its local memory. each
processor can also access other memories over the network. Since the remote accesses
pass through the network. these accesses take considerably longer than accesses to the
local memory. Because of this difference in access times, such multiprocessors are
called Non-Uniform Memory Access (NUMA) multiprocessors.

The organizations of Figures 12.2 and 12.3 provide a global memory, where any
processor can access any memory module without intervention by another processor.
A different way of organizing the system is shown in Figure 12.4. Here, all memory
modules serve as private memories for the processors that are directly connected to
them. A processor cannot access a remote memory without the cooperation of the
remote processor. This cooperation takes place in the form of messages exchanged
by the processors. Such systems are often called distributed-memory systems with a
messdage-passing protocol.

The preceding discussion uses processors and memory modules as the main func-
tional units in a multiprocessor system. Although we have not discussed 1/0 modules
explicitly, any multiprocessor must provide extensive 1/O capability. This capability
can be provided in different ways. Separate I/O modules can be connected directly to
the network. providing standard /O interfaces. as discussed in Chapter 4. Some 1/0
functions can also be incorporated into the processor modules.

Figures 12.2, 12.3, and 12.4 depict a high-level view of possible multiprocessor
organizations. The performance and cost of these machines depend greatly on imple-
mentation details. In the next two sections, we consider the most popular schemes for
realizing the communication network and the structure of the memory hierarchy.

623

624

CHAPTER 12 -+ J.ARGE COMPUTER SYSTEMS

12.4 INTERCONNECTION NETWORKS

In this section. we examine some of the possibilities for implementing the intercon-
nection network in multiprocessor systems. In general, the network must allow infor-
mation transfer between any pair of modules in the system. The network may also be
used to broadcast information from one module to many other modules. The traffic in
the network consists of requests (such as read and write), data transfers. and various
commands.

The suitability of a particular network is judged in terms of cost. bandwidth. effec-
tive throughput. and ease of implementation. The term bandwidth refers to the capacity
of a transmission link to transfer data and is expressed in bits or bytes per second. The
effective throughpui is the actual rate of data transter. This rate is less than the available
bandwidth because a given link usually does not carry data all of the time.

Information transfer through the network usually takes place in the form of packets
of fixed length and specified format. For example. a read request is likely to be a single
packet that contains the addresses of the source (the processor module) and destination
(the memory module) and a command field that indicates what type of read operation
is required. A write request that writes one word in a memory module is also likely
to be a single packet that includes the data to be written. On the other hand, a read
response that involves an entire cache block requires several packets. Longer messages
may require many packets.

Ideally, a complete packet would be handled in parallel in one clock cycle at any
node or switch in the network. This implies having wide links, comprising many wires.
However, to reduce cost and complexity. the links are often considerably narrower.
In such cases. a packet must be divided into smaller pieces, each of which can be
transmitted in one clock cycle.

12.4.1 SINGLE BUS

The simplest and most economical means for interconnecting a number of modules
is to use a single bus. The detailed aspects of bus design. as discussed in Chapter 4.
apply here as well. Since several modules are connected to the bus and any module
can request a data transfer at any time. it is essential to have an efficient bus arbitration
scheme. Examples of such schemes are given in Chapter 4.

In asimple mode of operation, the bus is dedicated to a particular source-destination
pair for the full duration of the requested transfer. For example, when a processor issues
a read request on the bus. it holds the bus until it receives the desired data from the
memory module. Since the memory module needs a certain amount of time to access
the data (as discussed in Chapter 5), the bus will be idle until the memory is ready to
respond with the data. Then the data are transferred to the processor. When this transfer
is completed. the bus can be assigned to handle another request.

Suppose that a bus transfer takes 7" time units, and the memory access time is 47
units. It then takes 67 units to complete a read request. Thus. the bus is idle for two-
thirds of the time. A scheme known as the split-transaction protocol makes it possible
to use the bus during the idle period to serve another request. Consider the following

12.4 INTERCONNECTION NETWORKS

method of handling a series of read requests, possibly from different processors. After
transferring the address involved in the first request. the bus may be reassigned to transfer
the address for the second request. Assuming that this request is to a different memory
module. we now have two modules proceeding with read access cycles in parallel. If
neither module has finished with its access. the bus may be reassigned to a third request.
and so on. Eventually. the first memory module completes its access cycle and uses the
bus to transfer the word to the source that requested it. As other modules complete their
cycles. the bus is used to transfer their data to the corresponding sources. Note that the
actual length of time between address transfer and word return is not critical. Address
and data transfers for different requests represent independent uses of the bus that can
be interleaved in any order.

The split-transaction protocol allows the bus and the available bandwidth to be used
more efficiently. The performance improvement achieved with this protocol depends
on the relationship between the bus transfer time and the memory access time. Perfor-
mance is improved at the cost of increased bus complexity. There are two reasons why
complexity increases. Since a memory module needs to know which source initiated
a given read request. a source identification tag must be attached to the request. This
tag is later used to send the requested data to the source. Complexity also increases
because all modules. not just the processors, must be able to act as bus masters.

Multiprocessors that use the split-transaction bus vary in size from 4 to 32 proces-
sors. In larger sizes. the bandwidth of the bus can become a problem. The bandwidth
can be increased if a wider bus, that is. a bus that has more wires. is used. Most of
the data transferred between processors and memory modules consist of cache blocks,
where a block consists of a number of words. If the bus is wide enough to transfer
several words at a time, then a complete block can be transferred more quickly than
if the words are transferred one at a time. The Challenge multiprocessor from Silicon
Graphics Corporation uses a bus that allows parallel transfer of 256 bits of data.

The main limitation of a single bus is that the number of modules that can be
connected to the bus is not large. An ordinary bus functions well if no more than 10
to 15 modules are connected to it. Using a wider bus to increase the bandwidth allows
the number of modules to be doubled. The bandwidth of a single bus is limited by
contention for the use of the bus and by the increased propagation delays caused by
electrical loading when many modules are connected. Networks that allow multiple in-
dependent transfer operations to proceed in parallel can provide significantly increased
data transfer rates.

12.4.2 CROSSBAR NETWORKS

A versatile switching arrangement is shown in Figure 12.5. It is known as the crossbar
switch, which was originally developed for use in telephone networks. For clarity of
illustration, the switches in the figure are depicted as mechanical switches, although in
practice these are electronic switches. Any module, Q;. can be connected to any other
module, Q;. by closing an appropriate switch. Such networks. where there is a direct
link between all pairs of nodes. are called fully connected networks. Many simultaneous
transfers are possible. If n sources need to send data to n distinct destinations, then all

625

626 CHAPTER 12 -+ LARGE COMPUTER SYSTEMS

= J1
- J1

11T

Figure 12.5 Crossbar interconnection network.

of these transfers can take place concurrently. Since no transfer is prevented by the lack
of a communication path, the crossbar is called a nonblocking switch.

In Figure 12.5, we show just a single switch at each crosspoint. In an actual muiti-
processor, however. the paths through the crossbar network are much wider. This means
that many switches are needed at each crosspoint. Since the number of crosspoints is -
inanetwork used to interconnect » modules. the total number of switches becomes large
as n increases. This results in high cost and cumbersome implementation. Crossbars
are attractive as interconnection networks when the number of interconnected nodes is
not large.

One of the larger crossbar switches is found in Sun’s E10000 system, in which 16
tour-processor nodes are connected by a 16 x 16 crossbar switch. It is also possible
to use a multilevel crossbar switch., where a crossbar switch at level | connects to a
crossbar switch atlevel 2, and so on. In this way it is possible to connect a larger number
of processors. Such schemes are found in Fujitsu’s VPP5000. Hitachi's SR8000. and
NEC’s SX-5 machines. A multilevel crossbar has become a popular choice for a high-
performance interconnection medium.

12.4.3 MULTISTAGE NETWORKS

The bus and crossbar systems just described use a single stage of switching to provide
a path from a source to a destination. It is also possible to implement interconnec-
tion networks that use multiple stages of switches to set up paths between sources
and destinations. Such networks are less costly than the crossbar structure. yet they
provide a reasonably large number of parallel paths between sources and destinations.
Multistage switching is best illustrated by an example. Figure 12.6 shows a three-stage

12.4 INTERCONNECTION NETWORKS

Stage 1 Stage 2 Stage 3
Q()] 1 iy

Figure 12.6 Multistage shuffle network.

network called a shuffle network that interconnects eight modules. The term “shuf-
fle™ describes the pattern of connections trom the outputs of one stage to the inputs
of the next stage. This pattern is identical to the repositioning of playing cards in a
deck that is shuffled by splitting the deck into two halves and interleaving the cards in
each half.

Each switchbox in the figure is a 2 x 2 switch that can route either input to either
output. If the inputs request distinct outputs. then they can both be routed simultaneously
in the straight-through or crossed pattern. If both inputs request the same output. only
one request can be satistied. The other one is blocked until the first request finishes
using the switch. It can be shown that a network consisting of s stages can be used to
interconnect 2* modules. In this case, there is exactly one path through the network
from any module Q; to any other module Q;. Therefore. this network provides full
connectivity between sources and destinations. Many request patterns. however. cannot
be satisfied simultaneously. For example. the connection from Q to Q, cannot be
provided at the same time as the connection from Q, to Qs.

627

628

CHAPTER 12 + LARGE COMPUTER SYSTEMS

A multistage network is less expensive to implement than a crossbar network. If
n nodes are to be interconnected using the scheme in Figure 12.6. then we must use
s = log, n stages with /2 switchboxes per stage. Since each switchbox contains four
switches. the total number of switches is

4 x % x log,n =2n x log,n
which. for large networks. is considerably less than the 1> switches needed in a crossbar
network.

A particular request can be routed through the network using the following scheme.
The source sends a binary pattern representing the destination number into the network.
As the pattern moves through the network, each stage examines a different bit to
determine switch settings. Stage 1 uses the most significant bit, stage 2 the middle bit.
and stage 3 the least significant bit. When a request arrives on either input of a switch.
it is routed to the upper output if the controlling bit is a 0 and to the lower output if the
controlling bitis a |. For example. a request from source Qs for destination Q3 moves
through the network as shown by the blue lines in Figure 12.6. Its route is controlled
by the bit pattern 01 [, which is the destination address.

A good example of a multiprocessor based on a multistage network was the BBN
Butterfly manufactured by BBN Advanced Computers. A 64-processor model of this
system contained a three-stage network built with 4 x 4 switches. The routing through
each stage of these switches was determined by successive 2-bit fields of the des-
tination address. A current example is the IBM RS/6000 SP multiprocessor. which
can use a multistage network as one of several options for interconnecting clusters of
processors.

Multistage networks are less capable of providing concurrent connections than
crossbar switches, but they are also less costly to implement. Interest in these networks
peaked in the 1980s and has diminished greatly in the past few years. Other schemes.
which we discuss in the remainder of this section, have become more attractive.

12.4.4 HYPERCUBE NETWORKS

In the three schemes discussed previously. the interconnection network imposes the
same delay for paths connecting any two modules. Such schemes can be used to
implement UMA multiprocessors. We now discuss network topologies that are suit-
able only for NUMA multiprocessors. The first such scheme that gained popular-
ity uses the topology of an n-dimensional cube. called a hvpercube, to implement
a network that interconnects 2" nodes. In addition to the communication circuits.
each node usually includes a processor and a memory module as well as some /0
capability.

Figure 12.7 shows a three-dimensional hypercube. The small circles represent the
communication circuits in the nodes. The functional units attached to each node are
not shown in the figure. The edges of the cube represent bidirectional communication
links between neighboring nodes. In an n-dimensional hypercube. each node is directly
connected to 1 neighbors. A useful way to label the nodes is to assign binary addresses

12.4 INTERCONNECTION NETWORKS 629

N3 N7
©11) (1
/')
N, Ng
(010) (110)
N, Ny
o) | / (101)

o,
Ny Ny

(000) (100)

Figure 12.7 A 3-dimensional hypercube
network.

to them in such a way that the addresses of any two neighbors differ in exactly one bit
position, as shown in the figure.

Routing messages through the hypercube is particularly easy. If the processor at
node N; wishes to send a message to node N, it proceeds as follows. The binary
addresses of the source, i, and the destination, j, are compared from least to most
significant bits. Suppose that they differ first in position p. Node N; then sends the
message to its neighbor whose address, k. differs from 7 in bit position p. Node Ny
forwards the message to the appropriate neighbor using the same address comparison
scheme. The message gets closer to destination node N; with each of these hops from
one node to another. For example, a message from node N; to node N5 requires 3 hops,
passing through nodes N3 and N . The maximum distance that any message needs to
travel in an n-dimensional hypercube is n hops.

Scanning address patterns from right to left is only one of the methods that can be
used to determine message routing. Any other scheme that moves a message closer to
its destination on each hop is equally acceptable, as Jong as the routing decision can
be made at each node on the path using only local information. This feature of the
hypercube is attractive from the reliability viewpoint. The existence of multiple paths
between two nodes means that when faulty links are encountered, they can usually be
avoided by simple, local routing decisions. If one of the shortest routes is not available,
4 message may be sent over a longer path. When this is done. care must be taken to
avoid looping, which is the situation in which the message circulates in a closed loop
and never reaches its destination.

Hypercube interconnection networks have been used in a number of machines.
The better known examples include Intel’s iPSC, which used a 7-dimensional cube to
connect up to 128 nodes, and NCUBE's NCUBE/ten, which had up to 1024 nodes in
a 10-dimensional cube. The hypercube networks lost much of their popularity in the
carly 1990s when mesh-based structures emerged as a more attractive alternative.

630

CHAPTER 12 + LARGE COMPUTER SYSTEMS

o O— O— O

Figure 12.8 A 2-dimensional
mesh network.

12.4.5 MESH NETWORKS

One of the most natural ways of interconnecting a large number of nodes is by means
of a mesh. An example of a mesh with 16 nodes is given in Figure 12.8. Again, the
links between the nodes are bidirectional. Meshes gained popularity in the early 1990s
and essentially displaced hypercubes as a choice for interconnection networks in large
multiprocessors.

Routing in a mesh network can be done in several different ways. One of the
simplest and most effective possibilities is to choose the path between a source node
N; and a destination node N; such that the transfer first takes place in the horizontal
direction from N; toward N,. When the column in which N; resides is reached. the
transfer proceeds in the vertical direction along this column. Well-known examples of
mesh-based multiprocessors are Intel’s Paragon and the experimental machines Dash
[3] and Flash [4] at Stanford University and Alewife [5] at MIT.

If a wraparound connection is made between the nodes at the opposite edges in
Figure 12.8. the result is a network that consists of a set of bidirectional rings in the X
direction connected by a similar set of rings in the Y direction. In this network. called a
torus, the average latency of information transfer is reduced. but at the cost of greater
complexity. Such an interconnection network is used in Fujitsu’s AP3000 machines.

Both the regular mesh and the torus schemes can also be implemented as three-
dimensional networks. in which the links are between neighbors in the X, Y. and Z
directions. An example of a three-dimensional torus is found in Cray's T3E multipro-
Cessor.

12.4.6 TREE NETWORKS

A hierarchically structured network implemented in the form of a tree is another inter-
connection topotogy. Figure 12.9«¢ depicts a four-way tree that interconnects 16 mod-
ules. In this tree. each parent node allows communication between two of its children
at atime. An intermediate-level node. for example node A in the figure. can provide a
connection from one of its child nodes to its parent. This enables two leaf nodes that are

12.4 INTERCONNECTION NETWORKS

(a) Four-way tree

(b) Fat tree

Figure 12.9 Tree-based networks.

any distance apart to communicate. Only one path at a time can be established through
a given node in the tree.

Atree network performs well if there is a large amount of locality in communication,
that is. if only a small portion of network traffic goes through the single root node. If
this is not the case. performance deteriorates rapidly because the root node becomes a
bottleneck.

To reduce the possibility of a bottleneck. the number of links in the upper levels
of a tree hierarchy can be increased. This is done in a fat tree network. in which each
node in the tree (except at the top level) has more than one parent. An example of a fat
tree is given in Figure 12.9h. In this case. each node has two parent nodes. A fat tree
structure was used in the CM-5 machine by Thinking Machines Corporation.

12.4.7 RING NETWORKS
One of the simplest network topologies uses a ring to interconnect the nodes in the

system. as shown in Figure 12.10a. The main advantage of this arrangement is that
the ring is easy to implement. Links in the ring can be wide. usually accommodating

631

632

CHAPTER 12 -+ LARGE COMPUTER SYSTEMS

(a) Single ring

Upper ring

Lower rings

(b) Hierarchy of rings

Figure 12.10 A ring-based interconnection network.

a complete packet in parallel, because each node is connected to only two neighbors.
However, it is not useful to construct a very long ring to connect many nodes because
the latency of information transfer would be unacceptably large.

Rings can be used as building blocks for the topologies discussed in previous
sections, such as meshes, hypelcubu trees, and fat trees. We consider the simple
possibility of using rings in a tree structure; this results in a hierarchy of rings as shown
in Figure 12.105. A two-level hierarchy is depicted in the figure. but more levels can be
used. Having short rings reduces substantially the latency of transfers that involve nodes
on the same ring. Moreover. the latency of transfers between two nodes on different
rings is shorter than if a single ring were used. The drawback of this scheme is that the
highest-level ring may become a bottleneck for traffic.

Commercial machines that feature ring networks include Exemplar V2600 by
Hewlett-Packard and KSR-2 by Kendal Squane Research. Rings have also been used in
the experimental machines Hector [6] and NUMAchine [7] at the Unive ersity of Toronto.

12.4.8 PRACTICAL CONSIDERATIONS

We have seen that several different topologies can be used to implement the intercon-
nection network in a multiprocessor system. It would be difficult to ar gue that any
topology is clearly superior to others. Each has certain advantages and disadvant: ages
When comparing difterent approaches. we must take into account several pr actlml
considerations.

The most fundamental requirement is that the communication network be fast
enough and have sufficient throughput to satisfy the traftic demand in a multiprocessor

12.4 INTERCONNECTION NETWORKS

system. This implies high speed of transfer along the communication path and a simple
routing mechanism to allow routing decisions to be made quickly. The network should
be easy to implement: the wiring complexity must be reasonable and conducive to
simple packaging. Complexity is inevitably reflected in the cost of the network. which
is another major consideration.

Multiprocessors of different sizes are necded. The ideal network would be suitable
for all sizes. ranging from just a few processors to possibly thousands of processors.
The term scalability is often used to describe the ability of a multiprocessor architecture
(which includes the interconnection network) to provide increased performance as the
size of the system increases, while the increase in cost is proportional to the increase
in size. It is particularly advantageous if a relatively small multiprocessor system can
be acquired at a low cost but can be easily expanded to a large system with a linear
increase in cost and performance. Unfortunately. this is not true for many commercial
products. Often. the up-front cost for even a small system is large because much of the
communication hardware needed to accommodate a larger system must be provided in
one piece.

In addition to providing the basic communication between sources and destinations,
itis useful to have broadcasting capability where a message traverses the entire network
and is received by all nodes. The ability to send a message to only a subset of the network
nodes is also beneficial. Such transters are called multicasting.

The choice of the interconnection network affects the implementation of schemes
used to ensure that any multiple copies of data that may exist in caches of different
processors acquire the updates made so that all copies always have the same values.
Such schemes are discussed in Section 12.6.2.

Reliability is another important factor. The more complex the network. the more
likely it is to fail. Ideally. the machine could continue to function even if some link in
the network fails. This is possible in networks that provide at least two different paths
hetween each pair of communicating nodes. In general. simple networks tend to be
robust. and they do not fail any more often than the processing and memory modules
in the system. Highly reliable networks that include additional hardware can be built
at considerable cost. This topic is beyond the scope of this book.

To demonstrate how all these characteristics can be evaluated. let us make a brief

qualitative comparison of networks based on meshes and rings.

Meshes and Rings

Both mesh and ring networks are characterized by point-to-point links (connecting
adjucent nodes). which can be driven at high clock rates. Both are viable in small
configurations and can be expanded without difficulty. Incremental expansion is simpler
in a ring network than in a mesh network.

In Figures 12.8 and 12.10. we indicate the nodes in the network as small circles
and the links as single lines. Consider a more detailed picture: Figure 12.11 shows the
communication paths associated with one node that has a processing module attached to
it. The switch block includes both the circuitry that selects the path for a transter and the
buffers needed to hold the data being transterred. Data are transferred from the bufter
in one node to the buffer in the next node in one clock cycle. Figure 12.11a depicts a
node in a two-dimensional mesh network. Since bidirectional communication is needed

633

634

CHAPTER 12 ¢ LARGE COMPUTER SYSTEMS
—_—
-

(a) Node in a mesh

Processing
module

i

Processing
module

(b) Node in a ring

Figure 12.11 Nodes in mesh and
ring networks.

in hoth the X and Y directions. eight distinct network links must be connected to the
node. The width of these links is limited by the total number of wires that can be used.
taking into account the cost and packaging. Thus. it is unlikely that an individual link
could be wide enough to carry an entire packet in parallel. To deal with this constraint.
a packet can be divided into smaller portions to correspond 1o the width of the link.
The term flit (FLow control diglT) is often used to reter to a portion of the packet that
can be accepted by the switching circuitry in the node for forwarding. or butfering in
case the forward path is blocked by another transfer. In practice. it is convenient if the
flit corresponds to the width of the link.

It a packet must be divided into flits. how should it be routed through the network?
A straightforward scheme. known as the store-and-forward method. is to provide a
large enough buffer in each node to hold all flits of a packet. Thus. an entire packet
is transferred from one node (o another, where it is stored until it can be forwarded
to the next node. (The number of clock cycles required for the transter depends on
the number of flits.) The negative aspects of this scheme are the size of the buffers
needed and the increased latency in passing through a node. An attractive alternative

12.4 INTERCONNECTION NETWORKS

is the wormhole routing scheme (which has also been referred to as pipelining). in
which the sequence of flits that constitute a packet can be viewed as a worm that moves
through the network. The first flit in a worm contains a header that includes the address
of the destination node. As this flit moves through the network, it establishes a path
along which the remaining flits will pass. The tail of the worm closes the established
path. The head of the worm may be temporarily blocked at any node, because another
worm may be passing through this node. However, once the head moves, the rest of
the worm moves along in subsequent clock cycles. Some control mechanism must
stop the transmission of flits from preceding nodes when the head of the worm is
blocked: a simple scheme using two buffers per node for each direction of transfer has
been developed for this purpose [8]. Wormhole routing has lower latency than store-
and-forward routing because the head flit is sent on its way without waiting for the
remaining flits of the packet.

Wormbhole routing is an application of a strategy known as circuit switching, which
is a familiar concept from telephone networks, where a path through the network
is established when a number is dialed. The conversation takes place along this path,
called a circuit. The circuit is deactivated when the calling party hangs up. In the case of
wormbhole routing, it is the head flit that establishes the path. The progression of this flit
may be temporarily blocked as explained above. Once a circuit is established, however,
the remaining flits of the packet move toward the destination without experiencing any
contention. In contrast, strategies in which an entire packet is buffered at each node, as
in the store-and-forward method, are called packet switching. In this case, no circuit is
set up, and the packet moves through the network as the buffer in cach node becomes
available.

Connections to a node in a ring network are shown in Figure 12.115. Here, transfer
occurs in only one direction, in addition to the connection to the processing module.
Thus, the width of the link can be four times that in a mesh network for the same wire
count. This means that it is feasible for an entire packet to be transferred in parallel from
one node to another in one clock cycle. Figure 12.115 shows a node in the lowest level
ring. to which a processing module is attached. If a ring hierarchy such as that in Fig-
ure 12.10b is used, then the inter-ring interfaces between lower and upper rings will have
two input and two output links, one of each belonging to the upper- and lower-level rings.

Routing in a hierarchical ring network is very simple. A packet is never blocked,
except possibly at an inter-ring interface when incoming packets on both upper- and
lower-level rings are destined to continue along just one of the rings. To handle this
situation, buffers (queues) must be provided in the interface, one from the lower- to the
upper-level ring and another in the opposite direction. A processing module may inject
a new packet onto the ring whenever no packet is arriving to the node from its upstream
neighbor.

Next we consider the ability of networks to broadcast or multicast data. This ability
is naturally available in ring networks. For example, a packet can be broadcast to all
nodes by sending it to the top-level ring. As the packet traverses this ring. a copy
is made at each inter-ring interface and sent along to the next lower-level ring. This
process is repeated at all levels so that the copies of the original packet visit all nodes
in the lowest-level rings. Broadcasting in a mesh network is more difficult, because
the broadcast packet has to be broken up into flits and the progress of the broadcast

635

636

CHAPTER 12 + LARGE COMPUTER SYSTEMS

worm may be blocked at various nodes by other traffic. Moreover. the completion of a
broadcast is not easy to detect.

The main disadvantage of a hierarchical ring network is that the ring at the top
of the hierarchy may become a bottleneck if too many packets need to be transferred
over it. This will occur if the locality in communication is low. The limited bandwidth
of the top-level ring restricts the scalability of systems based on such networks to
hundreds of processors. In contrast. mesh-based systems scale well to thousands of
processors.

The preceding discussion shows that both meshes and rings are good choices for
interconnection networks. Ring-based systems are easier to implement. but do not scale
as well as mesh-based systems. Thus. rings merit serious consideration if the maximum
size of the system is a few hundred processors. Mesh systems are suitable for use in
both small and very large systems. For very small systems. say. up to 16 processors.
the most effective choices are a single bus or a crossbar switch.

Since the size of a multiprocessor system has important implications. the reader
may wonder what range of systems are in practical use. Most multiprocessor systems
are relatively small. Many machines are in the range of 4 to 128 processors. Some very
large machines with thousands of processors exist. However. the market for such large
machines is small.

12.4.9 MIXED TOPOLOGY NETWORKS

We have considered several possible network topologies and showed that all existing
topologies have certain advantages and disadvantages. Designers of multiprocessor
systems strive to achieve superior performance at a reasonable cost. In an effort 1o
exploit the most advantageous characteristics of different topologies. many successful
machines feature mixed topologies. Bus and crossbar are excellent choices for connect-
ing a few processors together. So. we often see a cluster of processors. typically from
2 1o 8. connected using a bus or a crossbar. Such clusters, usually referred to as nodes.
are then interconnected using a suitable topology to form a larger system.

Data General's AV25000 system uses nodes where processors are connected by
a bus. These nodes are then interconnected using a ring network. Hewlett-Packard's
Exemplar V2600 also uses a ring network to interconnect nodes. where each node has
a crossbar switch connecting the processors. Compaq’s AlphaServer SC uses a fat tree
to interconnect the nodes that comprise processors connected by a crossbar switch.

12.4.10 SYMMETRIC MULTIPROCESSORS

Consider a multiprocessor system in which all processors have identical access to all
memory modules and all I/0 devices. so that the operating system software can treat
any processor as interchangeable with any other processor. Then. if any processor can
execute either the operating system kernel or user programs, the machine is called «
symmetric multiprocessor (SMP). This also implies that any processor can initiate an
I/0 operation on any 1/0 device. and it can handle any external interrupt.

12.5 MEMORY ORGANIZATION IN MULTIPROCESSORS

SMPs are usually implemented using either a bus or a crossbar network. Often,
an SMP is used as a node in a much larger multiprocessor system. For example, SMP
nodes are used in the Exemplar V2600 and AlphaServer SC multiprocessors mentioned
above.

12.5 MEMORY ORGANIZATION IN MULTIPROCESSORS

In Chapter 5 we saw that the organization of the memory in a uniprocessor system has
a large impact on performance. The same is true in multiprocessor systems. To exploit
the locality of reference phenomenon. each processor usually includes a primary cache
and a secondary cache. If the organization in Figure 12.2 is used. then each processor
module can be connected to the communication network as shown in Figure 12.12.
Only the secondary cache is shown in the figure since the primary cache is assumed
to be a part of the processor chip. The memory modules are accessed using a single
global address space, where a range of physical uddresses is assigned to each memory
module. In such a shared memory system. the processors access all memory modules
in the same way. From the software standpoint, this is the simplest use of the address
space.

In NUMA -organized multiprocessors. shown in Figure 12.3, each node contains
a processor and a portion of the memory. A natural way of implementing the node
is illustrated in Figure 12.13. In this case, it is also convenient to use a single global
address space. Again, the processor accesses all memory modules in the same way. but

Processor

A

!

Secondary
cache

!

A

Network
intertace

Interconnection network

Figure 12.12 A processor node for the
multiprocessor organization in

Figure 12.2.

637

638

CHAPTER 12 + LARGE COMPUTER SYSTEMS

p Secondary Local
OCESSOT - 3 - -
rocessor cache memory
/
Network
interface
Y
/

Interconnection I]Cm

Figure 12.13 Node structure for the multiprocessor organization in Figure 12.3.

the accesses to the local memory component of the global address space take less time
to complete than accesses to remote memory modules.

In the organization of Figure 12.4. cach processor accesses directly only its own
local memory. Thus. each memory module constitutes the private address space of
one processor: there is no global address space. Any interaction among programs or
processes running on different processors is implemented by sending messages trom
one processor to another. In this form of communication. each processor views the
interconnection network as an I/0 device. In effect, each node in such a system behaves
as a computer in the same manner as discussed in previous chapters for uniprocessor
machines. For this reason. systems of this type are referred to also as multicomputers.
This organization provides the easiest way to connect a number of computers into a
large system. Communication between tasks running on different computers is relatively
slow because the exchange of messages requires software intervention. We consider
this type of system in Section 12.7.

When data are shared among many processors. we must ensure that the processors
observe the same value for a given data item. The presence of many caches in a shared-
memory system creates a problem in this respect. Multiple copies of some data items
may exist in various caches. Whenever a processor changes (writes) a data item in its
own cache, the same change must be made in all caches that have a copy. Alternatively.
the other copies must be invalidated. In other words. shared data must be coherent in
all caches in the system. The problem of maintaining cache coherence can be solved in
several different ways. We examine the most popular solutions in Section 12.6.2.

12.6 PROGRAM PARALLELISM AND SHARED VARIABLES

The introduction to this chapter states that it is difficult to break large tasks down
into subtasks that can be executed in parallel on a multiprocessor. In some special
cases, however, this division is easy. If a large task originates as a set of independent
programs. then these programs can simply be executed on different processors. Unless

12.6 PROGRAM PARALLELISM AND SHARED VARIABLES 639

PARBEGIN
Procl:
Proc2:
PAR
sezment
ProcK:
PAREND

Figure 12.14 Parallel programming
construct.

these programs block each other in competing for shared I/O devices. the multiprocessor
i~ fully used by such a workload.

Another easy case occurs when a high-level source programming language has con-
structs that allow an application programmer to explicitly declare that certain subtasks
ol a program can be executed in parallel. Figure 12.14 shows such a construct. often
called a PAR segment. The PARBEGIN and PAREND control statemnents bracket a list
of procedures, named Proc|1 through ProcK, that can be executed in parallel. The order
of execution of this program is as follows. When the segment of the program preceding
the PARBEGIN statement is completed. any or all of the K parallel procedures can be
started immediately. depending on the number of idle processors available. They can
be started in any order. Execution of the part of the program following PAREND is
allowed to begin only after all of the K procedures have completed execution.

If this program is the only one being executed on the multiprocessor. then the
burden of using the processors efficiently is placed on the application programmer.
The degree of parallelism. K. of the PAR segments and their total size relative to
the sequential segments determine the level of utilization achievable by the multi-
Processor.

The most challenging task in achieving high utilization of multiprocessor systems
is to develop compilers that can automatically detect parallelism in a user program. The
usefulness of automatic detection of parallelism is based on the following reasoning.
An application programmer naturally visualizes a program as a set of serially performed
operations. However. even though the programmer specifies the operations as a serial list
of instructions in some high-level language. many opportunities may exist for executing
various groups of instructions in parallel. A simple example is that of successive passes
through a loop. If no data dependency is involved between different iterations of the
loop. then successive passes can be exccuted in parallel. On the other hand. if the
first pass through the loop generates data that are needed in the second pass. and so

640

CHAPTER 12 ¢ LARGE COMPUTER SYSTEMS

on, then paraliel execution is not possible. Data dependencies must be detected by
the compiler to determine which operations can be performed in parallel and which
cannot. The design of compilers that can detect parallelism is complex. Even after the
parallel parts of a program are identified. their subsequent scheduling for execution on
a multiprocessor with a limited number of processors is a nontrivial task. Scheduling
may be done either by the compiler or at runtime by the operating system. We do not
pursue this topic of determining and scheduling tasks that can be executed in parallel.
Instead, we turn to the issue of accessing shared variables that are modified by programs
running in parallel on different processors of a multiprocessor system.

12.6.1 ACCESSING SHARED VARIABLES

Assume that we have identified two tasks that can run in parallel on a multiprocessor.
The tasks are largely independent, but from time to time they access and modify some
common, shared variable in the global memory. For example, let a shared variable
SUM represent the balance in an account. Moreover, assume that several tasks running
on different processors need to update this account. Each task manipulates SUM in
the following way: The task reads the current value from SUM. performs an operation
that depends on this value, and writes the result back into SUM. It is easy to see how
errors can occur if such read-modify-write accesses to SUM are performed by tasks
T1 and T2 running in parallel on processors P1 and P2. Suppose that both T1 and T2
read the current value from SUM. say 17, and then proceed to modity it locally. Tl
adds 5 for a result of 22. and T2 subtracts 7 for a result of 10. They then proceed to
write their individual results back into SUM. with T2 writing first followed by T1. The
variable SUM now has the value 22. which is wrong. SUM should contain the value 15
(= 17+ 5 — 7). which is the intended result after applying the modifications strictly
one after the other. in either order.

To guarantee correct manipulation of the shared variable SUM. each task must
have exclusive access to it during the complete read-modify-write sequence. This can
be provided by using a global /lock variable. LOCK, and a machine instruction called
Test-and-Set. The variable LOCK has two possible values, O or 1. It serves as a guard to
ensure that only one task at a time is allowed access to SUM during the time needed to
execute the instructions that update the value of this shared variable. Such a sequence
of instructions is called a critical section. LOCK is manipulated as follows. It is equal
to 0 when neither task is in its critical section that operates on SUM. When either task
wishes to modify SUM. it first checks the value of LOCK and then sets it to 1, regardless
of its original value. If the original value was 0. then the task can safely proceed to
work on SUM because no other task is currently doing so. On the other hand. if the
original value of LOCK was 1, then the task knows that some other task is operating on
SUM. It must wait until that task resets LOCK to 0 before it can proceed. This desired
mode of operation on LOCK is made foolproof by the Test-and-Set instruction. As its
name implies, this instruction performs the critical steps of testing and setting LOCK in
an indivisible sequence of operations executed as a single machine instruction. While
this instruction is executing. the memory module involved must not respond to access
requests from any other processor.

12.6 PROGRAM PARALLELISM AND SHARED VARIABLES 641

Task T1 Task T2
LLOCKI TAS.B LOCKBYTE [LOCK2 TAS.B LOCKBYTE
BMI LLOCK BMI LOCK2
Critical Critical
“Modify SUM™ section “Modify SUM™ section
CLR.B LOCKBYTE CLRB LOCKBYTE

Figure 12.15 Mutually exclusive access to critical sections.

As a specitic example. consider the Test-and-Set instruction denoted as TAS in
the Motorola 68000 microprocessor. This instruction has one operand that is always a
byte. Assume that it is stored in the memory at location LOCKBYTE. Bit b7, the most
significant bit of this operand, serves as the variable LOCK just discussed. The TAS
instruction performs the uninterruptible test and set operations on bit 7. Condition
code flag N (Negative) is set to the original value of b7. Thus. after the execution
of TAS is completed. the program can continue into its critical section if N equals
0. but it must wait if N equals 1. Figure 12.15 shows how two tasks. T1 and T2,
can manipulate LOCKBYTE to enter critical sections of code in which they update
the shared variable SUM. The TAS instruction is followed by a conditional branch
instruction. This instruction causes a branch back to TAS if N = |, resulting in a wait
Joop that continues to execute TAS on the operand in location LOCKBYTE until it finds
b7 equal to 0. The branch instruction fails if TAS is executed when b7 is 0. allowing
the program (o continue into its critical section. When execution of the critical section
is completed. LOCKBYTE is cleared. As a result. bit b7 is reset to 0. allowing any
waiting program to proceed nto its critical section.

The TAS instruction is an example of a simple machine instruction that can be
used to implement a lock. Most computers include an instruction of this type. These
instructions may provide additional capabilities. such as incorporating a conditional
branch based on the result of the test.

12.6.2 CACHE COHERENCE

Shared data leads to another problem in a multiprocessor machine; the presence of
multiple caches means that copies of shared data may reside in several caches. When
any processor writes 10 a shared variable in its own cache. all other caches that contain
a4 copy of that variable will then have the old. incorrect value. They must be informed
of the change so that they can either update their copy to the new value or invalidate it.

642

CHAPTER 12 <« LARGE COMPUTER SYSTEMS

Cache coherence is defined as the situation in which all cached copies of shared data
have the same value at all times.

In Chapter 5 we discussed two basic approaches for performing write operations
on data in a cache. The write-through approach changes the data in both the cache and
the main memory. The write-back approach changes the data only in the cache: the
main memory copy is updated when a dirty data block in the cache has to be replaced.
Similar approaches can also be used in a multiprocessor system.

Write-Through Protocol

A write-through protocol can be implemented in two fundamental versions. One
version is based on updating the values in other caches. while the second relies on
invalidating the copies in other caches.

Let us consider the write-through with update protocol first. When a processor
writes a new value into its cache. the new value is also written into the memory module
that holds the cache block being changed. Since copies of this block may exist in
other caches. these copies must be updated to reflect the change caused by the write
operation. Conceptually. the simplest way of doing this is to broadcast the written data
to all processor modules in the system. As each processor module receives the broadcast
data. it updates the contents of the affected cache block if this block is present in its
cache (primary or secondary).

The second version of write-through protocol is based on imvalidation of copies.
When a processor writes a new value into its cache. this value is written into the memory
module, and all copies in other caches are invalidated. Again, broadcasting can be used
to send the invalidation requests throughout the system.

Write-Back Protocol

In the write-back protocol. multiple copies of a cache block may exist it different
processors have loaded (read) the block into their caches. If some processor wants
10 change this block. it must first become an exclusive owner of this block. When
the ownership is granted to this processor by the memory module that is the home
location of the block. all other copies. including the one in the memory module. are
invalidated. Now the owner of the block may change the contents at will without having
to take any other action. When another processor wishes to read this block. the data
are sent to this processor by the current owner. The data are also sent to the home
memory module. which reacquires ownership and updates the block to contain the
latest value.

The write-back protocol causes less traffic than the write-through protocol, because
aprocessoris likely to perform several writes to a cache block before this block is needed
by another processor.

So far. we have assumed that update and invalidate requests in these protocols are
broadcast through the interconnection network. Whether it is practical to implement
such broadcasts depends largely on the structure of the interconnection network. The
most natural network for supporting broadcasting is the single bus, discussed in Sec-
tion 12.4.1. In small multiprocessors that use a single bus. cache coherence can be
realized using a scheme known as snooping.

12.6 PROGRAM PARALLELISM AND SHARED VARIABLES

Snoopy Caches

In a single-bus system. all transactions between processors and memory modules
occur via the bus. In effect, they are broadcast to all units connected to the bus. Suppose
that each cache associated with a processor has a controller circuit that observes the
transactions on the bus that involve other processors. Suppose also that the write-back
protocol just described is used.

Whenever a processor writes to its cache block for the first time. the cache block
is marked as dirty. and the write is broadcast on the bus. The memory module and all
other caches invalidate their copies. The processor that performed the write is now the
owner of the cache block. It can do further writes in the same block without broadcasting
them. If another processor issues a read request for the same block. the memory module
cannot respond because it does not have a valid copy. But the present owner also sees
this request when it appears on the bus. and it must supply the correct value to the
requesting processor. The memory module is informed that an owner is supplying
the correct value by a broadcast signal tfrom the owner (which includes the data that
the owner places on the bus). and the memory updates its value. Finally. the owner
marks its copy as clean. Operation now proceeds with multiple caches and the memory
module all having the correct value of the block. In the case in which a dirty value must
he replaced to make room in the cache for a new block. a write-back operation to the
memory module must be performed.

I two processors want to write to the same cache block at the same time. one of the
processors will be granted the use of the bus first and will become the owner. As a result.
the other processor’s copy of the cache block will be invalidated. The second processor
can then repeat its write request. This sequential handling of write requests ensures that
the two processors can correctly change difterent words in a given cache block.

The scheme just described is based on the ability of cache controllers to observe the
activity on the bus and take appropriate actions. We refer to such schemes as snoopy-
cache techniques.

For performance reasons. it is important that the snooping function not interfere
with the normal operation of a processor and its cache. Such interference would occur
il. for each request on the bus. the cache controller had to access the tags of its cache
10 see if the block in question is present in the cache. In most cases. the answer would
be negative. To eliminate unnecessary interference. each cache can be provided with a
set of duplicate tags, which maintain the same status information about the blocks in
the cache but can be accessed separately by the snooping circuitry.

While the concept of snoopy caches is effective and simple to implement. it is suit-
able only for single-bus systems. In larger multiprocessors. more complex arrangements
must be used.

Directory-Based Schemes

Enforcing cache coherence using a broadcast mechanism for distribution of invali-
dation or update requests becomes less attractive as the multiprocessor system grows in
size. The main reason is that a large amount of unnecessary traftic may be generated by
a4 full broadcast because. in practical applications, copies of a given block are usually
present in only a few caches.

643

644

CHAPTER 12 + LARGE COMPUTER SYSTEMS

A useful alternative is to keep a directory of the locations. that is, the caches where
copies exist at any given time. One way to implement a directory scheme is to include
additional status bits for each block in a particular memory module. which indicate
the caches where copies of this block may be found. Then, instead of broadcasting
to all caches, the memory module can send individual messages. or a multicast such
as an invalidate request in the write-back protocol, to only those caches that have a
copy. Of course, the additional bits in the memory modules increase the cost of these
modules. Different versions of directory schemes have been proposed and some have
been implemented in existing multiprocessor systems.

SCI Standard

A specific approach to cache coherence has been standardized by the Institute of
Electrical and Electronics Engineers (IEEE). It is a part of the SCI (Scalable Coherent
Interface) standard [9]. which defines a multiprocessor backplane that is intended to
provide fast signaling. scalable architecture. cache coherence. and simple implemen-
tation. The interconnection network uses point-to-point links, and the communication
protocol 1s based on a single-requester single-responder principle. A packet originates
at a source node and is addressed to a single target. If a packet sent by the source is ac-
cepted by the target. the latter returns a positive acknowledgement packet. If the packel
is not accepted. then a negative acknowledgment is returned, which causes a retry.

Cache coherence is achieved using a distributed directory-based protocol. A doubly-
linked list is established for each cache block that contains shared data. Each processor
node that caches a given block of shared data includes pointers to the previous and to
the next nodes that share the block. These pointers are part of the cache-block tag. The
head of this doubly-linked list has a pointer to the memory module that holds the block.
When a new node accesses the memory module to read this block, the node becomes
the new head of the list and the memory directory is updated by replacing the pointer to
the previous head with the address of the new head. A write access to the memory can
be performed only by the head of the list. If another node wishes to perform a write. it
can do so by inserting itselt at the head of the list and purging the rest of the entries in
the list.

The SCI cache coherence scheme scales well because the memory directory and
the processor cache-tag storage requirements do not increase as the size of the linked
list increases. The disadvantage of this scheme is that this additional storage presents
a costly fixed overhead that is incurred in all cases.

Although the SCI standard does not specity a particular topology for the intercon-
nection network. the ring topology is one of the natural choices. Hewlett-Packard's
Exemplar V2600 and Data General's AV25000 multiprocessors use a ring topology
and implement the coherence protocol described above.

CC-NUMA Multiprocessors

Cache coherence is an important issue in multiprocessor systems. It has been
the topic of extensive research. We have briefly described some key implementation
schemes. Many subtle details are beyond the scope of this book.

12.7 MULTICOMPUTERS

A multiprocessor may have the cache coherence implemented either in hardware or
in software. From the performance point of view. it is advantageous to have hardware-
controlled cache coherence. Most of the current NUMA multiprocessors have cache
voherence implemented in hardware. They are often referred to as cache-coherent
NUMA (CC-NUMA) systems.

12.6.3 NEED FOR LOCKING AND CACHE COHERENCE

We should note that the requirement for lock guard controls on access to shared variables
is independent of the need for cache coherence controls — both types of controls are
needed. Consider a situation in which cache coherence is maintained by using the write-
through policy accompanied by cache updating of writes to shared variables. Suppose
that the contents of SUM in the example in Section 12.6.1 have been read into the
caches of the two processors that execute tasks T1 and T2. If the read operations are
part of an update sequence and are not made mutually exclusive by the use of a lock
auard control. then the original error can still occur. If task T1 writes its new value last.
as before, then SUM will contain the value 22, which is wrong. Cache coherence is
maintained throughout this sequence of events. However. incorrect results are obtained
hecause lock guard controls are not used.

12.7 MULTICOMPUTERS

In Section 12.5 we introduced the concept of multicomputers. We now examine the
salient features of such systems in more detail.

A multicomputer system is structured as shown in Figure 12.4. Each processing
node in the system is a self-contained computer that communicates with other process-
ing nodes by sending messages over the network. Systems of this type are often called
message-passing svstems, in contrast to the shared-memory multiprocessors discussed
previously.

In multicomputer systems. the demands on the interconnection network are less
stringent than in shared-memory multiprocessor systems. A shared-memory machine
must have a fast network with high bandwidth because processor modules frequently
access the remote memory modules that constitute the shared memory. A slow network
would quickly become a bottleneck. and performance would severely degrade.

In a multicomputer, messages are sent much less frequently. resulting in much less
traftic than in the shared-memory systems. Therefore. a simpler and less expensive
network can be used. In view of this disparity in the intensity of communication,
the terms tightly coupled and loosely coupled have also been associated with shared-
memory and message-passing systems, respectively.

Any network described in Section 12.4 can be used in a multicomputer system.
Since the traffic demands are relatively modest. the physical implementation of the
interconnection network is likely to be inexpensive. The links in the network often
involve bit-serial lines driven by 1/O device interfaces. An interface circuit reads a

645

646

CHAPTER 12 -+ LARGE COMPUTER SYSTEMS

message from the memory of the source computer using the DMA technique. converts
it into a bit-serial format. and transmits it over the network to the destination computer.
Source and destination addresses are included in a header of the message for routing
purposes. The message is routed to the destination computer where it is written into a
memory buffer by the I/O interface of that computer.

In the 1980s, hypercube-based interconnection networks were very popular. Such
networks were used in several message-passing multiprocessor systems. typically us-
ing bit-serial transmission. Examples of such machines are Intel’s iPSC. NCUBE's
NCUBE/ten. and Thinking Machines” CM-2. Then in the early 1990s. other topologies
gained popularity for both message-passing and shared-memory machines. Thinking
Machines” CM-5 is an example of a message-passing machine that uses a fat tree net-
work with a link width of four. Intel's Paragon uses a mesh network with a link width
of 16. To facilitate message passing. it is useful to include a special communications
unit at each node in the network. For example. the Paragon machine has a message
processor that essentially frees the application processor from having to be involved in
the details of message handling.

12.7.1 LOCAL AREA NETWORKS

Because the communication demands in a multicomputer system are relatively low.
we can consider replacing the specialized interconnection network with some readily
available standard network that was developed for more general communication pur-
poses. Many networks exist for interconnecting various types of computing equipment.
Networks that span a small geographic area with distances not exceeding a few kilo-
meters are called local area nerworks (LANs). Networks that cover larger areas that
involve distances up to thousands of kilometers are referred to as long-haul networks.
or wide area networks.

The most popular LANs use either the bus or the ring topology. The transmission
media for either bus or ring LANs can be twisted wire pair. coaxial cable, or optical
fiber. Bit-serial transmission is used. and rates range {rom ten to hundreds of megabits
per second. Only one message packet at a time can be successfully transmitted on the
single shared path. Source and destination device addresses precede the data field of
packet. and appropriate delimiters indicate the start and end of the packet. In general.
packets have variable lengths ranging from tens of bytes to over 1000 bytes.

A protocol that implements distributed access control is needed to ensure orderly
transfer of packets between arbitrary pairs of communicating devices. We will sketch
the basic ideas involved in two widely used protocols — the Ethernet bus and the token
ring. These protocols are specified in detail in IEEE standards [10}.

12.7.2 ETHERNET (CSMA/CD) Bus

The Ethernet bus access protocol, also called the Carrier Sense Multiple Access with
Collision Detection (CSMA/CD) protocol. is conceptually one of the simplest protocols.
Whenever an attached device has a message to transmit, it waits until it senses that the

12.7 MULTICOMPUTERS

bus is idle and then begins transmission. The device then monitors the bus for 27
seconds as it transmits its message. where 1 1s the end-to-end bus propagation delay.
If the device does not observe any distortion of 1ts transmitted signal during the 21
interval. then it assumes that no other station has started transmission and continues
its transmission to completion. On the other hand. if distortion is observed. caused by
the beginning of a transmission from some other device. then both devices must stop
transmitting. The mutually destructive distortion of the two transmitted signals is called
acollision, and the time interval 27 is called the collision window.

Messages that have been destroyed by collision must be retransmitted. If the devices
involved in the collision attempt to retry immediately. their packets will almost certainly
collide again. A basic strategy used to prevent collision of the retries is as follows. Each
device independently waits for a random amount of time. then waits untl the bus is idle
and begins retransmission. If the random waits are a few multiples of 27 the probability
of repeated collisions is reduced.

12.7.3 TOKEN RING

The token-ring protocol is used for ring networks. A single. appropriately encoded short
miessage, called a roken. circulates continuously around the ring. The arrival of the token
at a ring node represents permission to transmit. If the node has nething to transmit.

it forwards the token to the next node downstream with as little delay as possible. If

the node has data ready for transmission. it inhibits propagation of the token. Instead it
transmits a packet of information preceded by an appropriately encoded header flag. As
the packet i1s transmitted around the ring. its contents are read and copied as it travels
past the destination node. The packet continues to travel around the ring until it reaches
the source node, where it is discarded. When the source node completes transmitting a
packet. it releases the token. which again starts to circulate around the ring. The packet
size on atokenring is variable and is limited only by the amount ot buffer memory avail-
able in each node because the destination node must be able to store complete packets.

The main reason for considering the standard ILANs in the context of multicomputer
systems is not because they can be used in self-contained systems that we have been
discussing. but because they can be used in conjunction with standard workstations to
conveniently form a multicomputer system.

12.7.4 NETWORK OF WORKSTATIONS

Today, most commercial. educational. and government organizations have a collection
ol workstations to meet their computing needs. These workstations are usually con-
nected to a LAN that allows access to fileservers. printers. and specialized computing
resources. (See Figure 12.16.)

Although each workstation is normally used as a separate computer, many work-
stations can be viewed as a multicomputer system. All that is needed is the software to
allow parallel processing. Of course, some significant ditferences exist between such
a system and a commercial message-passing multiprocessor machine. In particular,

647

648

CHAPTER 12 ¢ LARGE COMPUTER SYSTEMS

Workstation o o e Workstation

| I

I Ethernet

File server

Figure 12.16 A typical network of workstations.

communication over the LAN is slower. largely because the operating system must
intervene when messages have to be exchanged between programs running on differ-
ent computers. This means that a nctwork of workstations does not perform as well
as a self-contained system with a specialized interconnection network. But the great
advantage is that the network of workstations is usually readily available. It is certainly
useful to be able to run very large applications on such systems when the workstations
are not used for their normal purposes. which is typically the case at night.

12.8 PROGRAMMER’S VIEW OF SHARED MEMORY
AND MESSAGE PASSING

In previous sections. we considered the hardware implications of multiprocessor sys-
tems that feature shared-memory and message-passing paradigms. Now we briefly
examine how these paradigms affect the user. namely. the programmer who is imple-
menting a parallel application. We consider a small example that involves only two
processors. This keeps the discussion simple yet allows us to elaborate the key ideas.

Assume we want to compute the dot product of two N-element vectors. A sequential
program for this task is outlined in Figure 12.17. It is suitable for execution on a single
processor. The program is mostly self-explanatory. The read statements load the values
of the two vectors from a disk (or some other 1/O device) into the main memory. This
task is done by the operating system. Let us attempt to parallelize this program to run
on two processors. Evidently. the potential for parallelization lies in the loop that
computes the dot product by generating the product of a pair of elements and adding
the result to the previously accumulated partial dot product.

12.8.1 SHARED MEMORY CASE

Our first attempt to write a program for two processors is shown in Figure 12.18. As
the program starts executing on one processor, it loads the vectors into memory and
initializes the doi_product variable to 0. We achieve parallelism by having a second

12.8 PROGRAMMER’S VIEW OF SHARED MEMORY AND MESSAGE PASSING

integer array a[l..N], b[1..N]
integer dot_product

read a[l..N] from vector_a
read b[1..N] from vector_b
dot_product := 0

do_dot (a. b)

print dot_product

do_dot (integer array x[1..N]. integer array y[1..N])
for k:=1to N
dot_product := dot_product + x[k] * vik]
end
end

Figure 12.17 A sequential program o compute the dot
product.

shared integer array a[l..N]. b[1..N]
shared integer dot_product

shared lock dot_product_lock
shared barrier done

read a[l..N] from vector_a
read b[1..N] from vector_b
dot_product := 0

create _thread (do.dot, a, b)
do_dot (a. b)

print dot_product

do_dot (integer array x[1..N], integer array y[1..N])
private integer id
id := mypid()
for k= (id*N/2) + 1 to (id + 1)*N/2
lock (dot_product_lock)
dot_product := dot_product + x{k] * v[k]
unlock (dot_product_lock)
end
barrier (donc)
end

Figure 12.18 A first attempt at a program to compute the dot
product on two processors in a shared memory
machine.

649

650

CHAPTER 12 ¢ LARGE COMPUTER SYSTEMS

processor perform half of the computations needed to obtain the dot product. This i
done by creating a separate thread to be executed on the second processor.

A thread is an independent path of execution within a program. Actually, the term
thread is used to refer to a thread of control, where multiple threads execute portions
of the program and can run in parallel as if they were separate programs. Thus, two
or more threads can be running on different processors. executing either the same or
different code. The key point is that all threads are part of a single program and run
in the same address space. We should note that in the commonly used uniprocessor
environment. each program has a single thread of control.

In the program in Figure 12.18, a new thread is created by the create _thread statc-
ment. This thread will execute the do_dot routine and terminate. The operating systermn
will assign the identification number of | to the new thread. The first processor contin-
ues by executing the do_dot (a.b) statement as thread 0. The statement id := mypid()
sets the variable id to the assigned identification number of the thread. Using the id
value in the for loop allows simple specification of which halves of the vectors ¢ and
b should be handled by a particular thread.

Changing the accumulated value of the dor_product variable is the critical section in
the do_dot routine; hence, each thread must have exclusive access to this variable. This
is achieved by the locking mechanism. as discussed in Section 12.6.1. Thread 0 does
not proceed past the barrier statement in the do_dot routine until the other thread hasx
reached the same synchronization point. This ensures that both threads have completed
their updates of the dot_product variable before thread 0 is allowed to print the final
result. The barrier concept can be realized in different ways. A simple approach is to
use a shared variable, such as done in Figure 12.18. This variable is initialized to the
number of threads (two in our example) and then decremented as each thread arrives
at the barrier.

The program in Figure 12.18 has one major flaw. The locking arrangement used
does not allow the expected parallelism to be achieved because both threads continu-
ously write the same shared variable. dor_product. Thus, the potentially parallel part of
the required computation will in fact be done serially.

To achieve the desired parallelism, we can modify the program as shown in Fig-
ure 12.]19. Instead of using the shared variable. dot_product, in the for loop. a pri-
vate variable, local_dot_product, is introduced to accumulate the partial dot product
as it 1s being computed by each thread. Thus, only upon completion of the loop 13
it necessary to enter a critical section where each thread updates the shared vari-
able. dot_product. This modification allows both threads to execute the for loop in
parallel.

This example can be easily extended to a larger number of processors. All that
needs to be done is to create more threads. The loop bound expressions in the for loop
will determine the range of elements that each thread uses in the computation based on
the value of the assigned id.

The effectiveness of the program in Figure 12.19 depends on the size of the data
vectors. The larger the vectors, the more effective this approach is. For small vectors.
the overhead of creating threads and providing synchronization outweighs any benetfit
that parallelism may provide.

12.8 PROGRAMMER'S VIEW OF SHARED MEMORY AND MESSAGE PASSING
shared integer array aj{l..N]. h{1..N]
shared integer dot_product
shared lock dot_product lock
shared barrier done

read aj{1..\] from vector.a
read b[1..N] from vectorh
dot _product := 0
create_thread (do_dot. a. b)
do_dot (a. b)

print dot_product

do_dot (infeger array xi1.N]. integer array v[1..N])
private integer local dot_product
private integer id
id = mypid()
local_dot _product := 0
for k:= (id*N/2) + 1 to (id + 1)*N/2
local_dot _produet = local_.dot_product + x[k] * v{k]
end
lock (dot _product lock)
dot_prodnet := dot_product + local_dot _product
unlock (dot_product_lock)
barrier (donc)
end

Figure 12.19 An efficient program to compute the dot product on two
processors in a shared memory machine.

12.8.2 MESSAGE-PASSING CASE

In this case the memory is distributed. and each processor can access directly only
its own memory. The desired program will run on two processors and the arrays will
have to be explicitly divided into halves. with each half being stored in the memory
of one processor. Each copy of the program will have access only to its portion of
the data. Applications of this type are called Single Program Multiple Data (SPMD).
The reader should note the difference between this type of application and the SIMD
type introduced in Section 12.1.1. In the SIMD type. all processors execute the same
instruction at any given time.

A possible program is given in Figure 12.20. The vector data must first be loaded
into the private memories of the two processors. The program that s assigned the id
value of 0 reads the first half of vector « from the disk. with the help of the operating

651

652

CHAPTER 12 ¢ LARGE COMPUTER SYSTEMS

integer array a[l..N/2], b[1..N/2], temparray(1..N/2]
integer dot. product

integer id

integer temp

id = mypid()
if (id = 0) then
read a[l..N/2] from vector_a
read temparray[l..N/2] from vector_a
send (temparray[1..N/2]. 1)
read b[1..N/2] from vector_b
read temparray|1..N/2] from vector_b
send (temparray[1..N/2]. 1)
else receive (a[1..N/2], 0)
receive (bl1..N/2],)
end
dor_product := 0
do dot (a. b)
if id = 1) send (dot_product, 0)
else receive (temp. 1)
dot_product := dot_product + temp
print dot_product
end

do dot (integer array x[1..N/2]. integer array yi1..N/2])
for ki= 1 to N/2
dot_product := dot_product + x[k] * y[k]
end
end

Figure 12.20 A message-passing program to compute the
dot product on two processors.

system, and it stores the data in its memory under this name. It then reads the remaining
second half of vector a and places the data in a memory buffer called temparray. Next.
it sends a message containing the data from this buffer to the processor that executes
the program that is assigned the id value of |. The same operations are then repeated
for the data that constitute vector b. The program with the id value of | receives the
second halves of vectors a and b and stores them in its memory under the same names.

The do_dot routine now simply computes the dot product for the N/2 elements.
Note that the loop bounds are the same for both processors because each uses the data
stored in its own memory. The message-passing feature is also illustrated by the action
taken when the processors complete execution of the do_dot routine: The program that
has the id value of 0 will compute and print the final dot product. It will do so when it

12.9 PERFORMANCE CONSIDERATIONS

receives the message with the value of the partial dot product that was computed and
sent by program 1. This value is received in a temporary buffer called remp.

Again, it is easy to see how this example could be extended to many processors.
The vectors would have to be partitioned into portions that would be assigned to each
processor for computation. One of the processors. for example. the one that executes
the program with id = 0, would be designated to compute the final result using the data
received in messages from other processors.

The overhead of establishing parallel execution on multiple processors consists of
the time needed to load the copies of the program into different processors, the time used
1o set up the partitioned arrays in the memories associated with different processors,
and the time needed to send other messages among processors. Performance benefits
depend on the size of the vectors and the number of processors used.

Shared-memory and message-passing paradigms have certain strengths and weak-
nesses. The shared-memory environment is more natural to use because it is an extension
of the uniprocessor programming model. Hence. it is easier to write parallel programs
that are reasonably efficient. Since the memory access latency may be high if data reside
in remote memory modules. it is important to minimize the number of write accesses
10 global variables. The amount of traffic in the network may be large, causing the
network to become a bottleneck. Synchronization of processes is the responsibility of
the programmer and influences the performance of an application signiticantly.

Message passing gives a less natural programming environment because of multiple
address spaces in private memories. The time overhead of message passing is very
«ignificant: hence, the programmer must try to structure programs to minimize its
offect. Since messages are relatively infrequent. the interconnection network is not
likely to be a problem. Synchronization is implicit in the messages passed between
processes. Perhaps the biggest advantage of message passing is that it can be supported
by less expensive and more commonly available hardware.

12.9 PERFORMANCE CONSIDERATIONS

This chapter has concentrated on the design of systems that use multiple processors
to reduce the time needed to run a large application. The most important performance
measure is the speedup achieved on a multiprocessor system in comparison with the time
it would take to run the same application on a single processor. The speedup is defined as

Ty

Sp =

Tp
where 7y and Tp are the times needed if one or P processors are used, respectively.
Figure 12.21 shows three types of speedup that may occur as a function of the number of
processors in the system. Intuitively, we would expect that, as the number of processors
is increased. the time needed to run an application that is parallelizable should decrease
proportionately. This would give a linear speedup. where S = P. which is the goal in

scalable systems. Unfortunately. this goal is not easy to achieve.

As the previous section shows, it is not possible to parallelize all parts of an
application program. The sequential parts will take the same amount of time regardless

653

654 CHAPTER 12 -« [ARGE COMPUTER SYSTEAIS

Speedup (S

|

~—— Superlinear speedup
S>P

~—— Lincar speedup

S=p

,/———- Sublincar speedup
S<P

Number of processors (P)

Figure 12.21 Speedup curves in multiprocessor systems.

of the number of processors used. It is the relative proportion of sequential parts that
limits the achievable speedup.

Another reason why linear speedup is difficult to achieve is the overhead caused
by initialization. synchronization. communication. cache coherence control. and load
imbalance. Overhead tends to increase with the size of the system. We have encountered
examples of such overhead in previous sections. except for load imbalance. It is usually
necessary to wait for the last processor to complete a parallel task before proceeding
with the next set of tasks. Hence. when a parallel task is spread over a number of
processors. it is most efficient if all processors reach a given synchronization point at
about the same time, in which case the load is balanced.

In practical systems the speedup achievable with most applications is sublinear, and
apointis reached where adding processors no longer improves performance. Curiously,
there exist some applications for which even superlinear speedup is possible. but these
are not common. We give an example of such an application in the next subsection.

12.9.1 AMDAHL’S LAW

Letus consider the improvement in performance from a quantitative point of view. An
enhancement in a computer system inevitably improves some part of the system but not
the entire system. The improved performance depends on the impact of the enhanced
part. This reasoning was formalized by Gene Amdahl in a well known “law™ [11].

12.9 PERFORMANCE CONSIDERATIONS

[t can be stated as
Old time 1

Shew = = . ~
New time | — fcnh.mgcd -+ fcnhunccd/‘Senhunccd

where

o Shew is the speedup in the new system, which includes the enhancement.

Senhanced 18 the speedup achievable if only the enhanced part of the system is used.

* funhanced i$ the fraction of the computation time in the old system that can be
improved with the enhancement made.

In terms of a multiprocessor system, this law can be restated as follows. Let f be the
fraction of a computation (in terms of time) that is parallelizable, P> be the number
of processors in the system, and Sp be the speedup achievable in comparison with
sequential execution. Then we have
1 P
L= f+fiP P=f(P=1

This formula assumes that the parallelizable part is performed by all processors using
perfect load balance.

Suppose that a given application is run on a 64-processor machine and that 70
percent of the application is parallelizable. Then the expected improvement is

64
2

So4 - =322

T 64-07x63
It the same application is run on a 16-processor machine, the expected speedup would
he 2.91. This indicates that the speedup is much less than the number of processors
in the machine. Moreover, the difference in speedup achieved by increasing from 16
to 64 processors is minimal. Clearly, it makes little sense to use large multiprocessors
for applications that have significant sequential (nonparallelizable) parts. For good
speedup. the sequential parts must be very short. For an application with /= 0.95, the
«peedup in the preceding machines would be 15.42 and 9. 14, respectively. Amdahl’s
Jaw. in fact, states that linear speedup cannot be achieved because almost all applications
have some sections that cannot be parallelized.

This discussion assumes that each processor performs an equal amount of parallel
computation. Such equal load balancing may not necessarily occur. If it is necessary to
wail for the slowest processor to complete its parallel assignment before continuing with
the next step, then the results will be worse than predicted by the preceding formula.
However. there exist applications where the opposite may occur, namely, where the tasks
performed by all processors may be terminated as soon as one processor completes its
task. For example, such unusual behavior occurs in applications based on a technique
known as simulated annealing. To illustrate this technique. suppose that in the design
of a VLSI chip. it is desired to place the logic gates such that the total length of wires
in the resulting circuit is minimized. This requires trying a large number of different
placements, which can be done by assigning the best placement known at a given time
1o all processors as a starting point for the next iteration. Then each processor can use a
Jdifferent randomized approach to change the positions of the gates in search for a better

Sp

655

656

CHAPTER 12 + LARGE COMPUTER SYSTEMS

placement. As soon as one processor finds a placement that is superior to the starting
placement by some predetermined amount. this processor’s solution can be used as the
new starting point for all the processors. without waiting for the other processors to also
find acceptable solutions. An application of this type may exhibit superlinear speedup.
because if it is performed by a single processor, this processor may spend a lot of time
investigating unpromising possibilities before it reaches a good one.

12.9.2 PERFORMANCE INDICATORS

From a user’s point of view, the most important characteristics of a computer system
are its cost, ease of use. reliability, and performance. Several indicators of performance
are used to depict the processing capability of computers. The discussion of this issue
in Section 8.8 applies equally to multiprocessor systems.

The raw power of a processor can be indicated in terms of the number of operations
it can perform in one second. Two popular measures are MIPS, the number of millions of
instructions executed per second. and MFLOPS (pronounced megaFLOPS). the number
of millions of floating-point operations performed per second. When a manufacturcr
gives the MIPS and MFLOPS numbers for a given processor. these numbers indicate the
processor’s maximum capability. This maximum is not always achievable in practical
applications. In a multiprocessor system. the total MIPS and MFLOPS are simply the
sums of the values for all the processors.

Another common performance indicator is the communications capability of the
interconnection network. usually given as the total bandwidth in bytes per second. This
assumes an optimal situation in which sufficient data are available for transfer to keep
the largest possible number of network links busy. thus maximizing the amount of data
that can be transferred at one time.

While indicitors such as MIPS. MFLOPS, and network bandwidth give a useful
impression of what the system is capable of doing. they are not a measure of the
actual performance we expect to observe when application programs are executed.
Practical applications can use only a fraction of the total resources available at any
given time. This fraction varies from one system to another and from one application to
another. A proper comparison of two different systems is possible only if a desired set of
applications is run on both systems and their performance is observed. To facilitate such
comparisons. a number of benchmark programs have been developed. These programs
are indicative of the behavior found in a variety of common applications. Comparing
different systems based on benchmark programs has become widely accepted.

12.10 CONCLUDING REMARKS

Multiprocessors provide a way to realize supercomputing capability at a reasonable
cost. They are most cost-effective in the range of tens to hundreds of processors. Very
large systems comprising thousands of processors are difficult to use fully, and their
cost curtails the market demand significantly.

12.1

12.2

12.3

PROBLEMS 657

A particularly cost-effective possibility is to implement a multicomputer system
using workstations interconnected by a local area network. This possibility will become
even more attractive as local area network speeds increase.

Successful use of multiprocessors depends heavily on the availability of system
software that makes good use of the available resources. An application program will
not show good performance if the locality and parallelism inherent in the application
are not properly exploited. The compiler must detect the opportunities for parallel
execution. The operating system must schedule the execution to make good use of
locality, by assigning tasks that involve a large amount of interaction to processors that
are close to each other. The application programmer may provide useful hints in this
respect. but it is best if the system software can do this on its own.

This chapter provides an overview of the most important aspects of multiprocessor
and multicomputer systems. Many details should be studied to understand fully the
capabilities of these systems and the design issues involved. For detailed study, the
reader should consult books that focus on this subject [12-16].

PROBLEMS

Write a program loop whose instructions can be broadcast from the control processor
in Figure 12.1 that will enable an array processor to iteratively compute temperatures in
a plane, as discussed in Section 12.2. In addition to instructions that shift the network
register contents between adjacent processing elements (PEs). assume that there are
two-operand instructions for moves between PE registers and local memory and for
arithmetic operations. Assume also that each PE stores the current estimate of its grid
point temperature in a local memory location named CURRENT and that a few registers,
RO. R1. and so on, are available for processing. Each boundary PE maintains a fixed
boundary temperature value in its network register and does not execute the broadcast
program. A small value stored in location EPSILON in each PE is used to determine
when the local temperature has reached the required level of accuracy. At the end of
each iteration of the loop, each PE must set its status bit, STATUS, to | if its new
temperature satisfies the following condition:

INew temperature — [CURRENT]| < [EPSILON]
Otherwise. STATUS is set to 0.

Assume that a bus transfer takes 7 seconds and memory access time is 4T seconds.
A read request over a conventional bus then requires 67 seconds to complete. How
many conventional buses are needed to equal or exceed the bandwidth of a split-
transaction bus that operates with the same time delays? Consider only read requests,
ignore memory conflicts, and assume that all memory modules are connected to all
buses in the multiple bus case. Does your answer increase or decrease if memory
access time increases?

In a bus-based multiprocessor, the system bus can become a bottleneck if it does not
support a high enough transfer rate. Suppose that a split-transaction bus is designed to

658

12.4

12.5

12.6

12.7

12.8

12.9

12.10

12.11

CHAPTER 12 + [LARGE COMPUTER SYSTEMS

be four times as wide as the word length of the processors used in the system. Will this
increase the effective transfer rate to four times the rate of a similar bus that is only as
wide as the processor word length? Explain your answer.

Assume that the cost of a 2 x 2 switch in a shuffle network is twice the cost of o
crosspoint in a crossbar switch. There are n” crosspoints in an n x n crossbar switch.
As n increases. the crossbar becomes more costly than the shuffle network. What is the
smallest value of n for which crossbar cost is five times more costly than the shuftle
network?

Shuffle networks can be built from 4 x 4 and 8 x 8 switches. for example. instead of
from 2 x 2 switches. Draw a 16 x 16 (n = 16) shuffle network built from 4 x 4 switches.
If the cost of a 4 x 4 switch is four times the cost of a 2 x 2 switch, compare the cost
of shuffle networks built from 4 x 4 switches with those built from 2 x 2 switches
for n values in the sequence 4,4°. 4%, and so on. Qualitatively compare the blocking
probability of these two different ways of building shuffle networks.

Suppose that each procedure of a PAR segment (see Figure 12.14) requires | unit
of time to execute. A program consists of three sequential segments. Each segment
requires k time units and must be executed on a single processor. The three sequential
segments are separated by two PAR segments, each of which consists of k procedures
that can be executed on independent processors. Derive an expression for speedup for
this program when it is run on a multiprocessor with n processors. Assume n < k. What
is the limiting value of the speedup when k is large and n = k? What does this result
tell you about the effect of sequential segments in programs that have some segments
with substantial parallelism?

The shortest distance a message travels in an n-dimensional hypercube is | hop. and
the longest distance a message needs to travel is n hops. Assuming that all possible
source/destination pairs are equally likely, is the average distance a message needs to
travel larger or smaller than (1 + n)/2? Justify your answer.

A task that “busy-waits” on a lock variable by using a Test-and-Set instruction in u
two-instruction loop. as in Figure 12.15, wastes bus cycles that could otherwise be used
for computation. Suggest a way around this problem that involves a centralized queue
of waiting tasks that is maintained by the operating system. Assume that the operating
system can be called by a user task and that the operating system chooses which task
i$ to be executed on a processor from among those ready for execution.

What are the arguments for and against invalidation and updating as strategies for
maintaining cache coherence?

Section 12.6.3 argues that cache coherence controls cannot replace the need for lock
variables. Can the use of lock variables replace the need for explicit cache coherence
controls?

Estimate the improvement in performance that can be achieved if the program in Fig-

ure 12.19 is used rather than the program in Figure 12.18. Make some appropriate
assumptions about the amount of time it takes (0 perform each step in the program.

12.12

12.13

12.14

12.15
12.16

1217

12.18

PROBLEMS 659

Modify the program in Figure 12.19 to make it suitable for execution in a four-processor
machine.

Modify the program in Figure 12.20 to make it suitable for execution in a four-processor
system.

For small vectors, the approach in Figure 12.19 will be worse than if the dot product 1$
computed using a single processor. Estimate the minimum size of the vectors for which
this approach leads to better performance. Make some appropriate assumptions about
the amount of time it takes to perform each step in the program.

Repeat Problem 12.14 for the approach in Figure 12.20.

Shared-memory multiprocessors and message-passing multicomputers are architec-
tures that support simultaneous execution of tasks that interact with each other. Which
of these two architectures can emulate the action of the other more easily? Briefly
justify your answer.

The Ethernet bus LAN protocol is really only suitable when message transmission time
is significantly larger than 27, where 7 is the end-to-end bus propagation delay. Consider
the case in which transmission time is less than . Is it possible for a destination station
to correctly receive an undistorted message, even though the source station observes
a collision inside the 27 collision window period? If not. justify your answer. If you
think it is possible, give the relative locations of the source, destination, and interfering
stations on the bus and describe the relevant event times.

A mailbox memorv is a RAM memory with the following feature. A full/empty bit,
F/E. is associated with each memory word location. The instruction

PUT RO,BOXLOC.WAITSEND

is executed indivisibly as follows. The F/E bit associated with mailbox memory location
BOXLOC is tested. If it is 0, denoting empty, then the contents of register RO are writ-
ten into BOXLOC, F/E is set to |, denoting full, and execution continues with the next
sequential instruction. Otherwise (that is, for F/E = 1), no operations are performed
and execution control is passed to the instruction at location WAITSEND in program
memory.

(a) Give an appropriate definition for the instruction
GET RO,BOXLOC,WAITREC

that is complementary to the PUT instruction.

(b) Suppose two tasks, T} and T, running on different processors in a multiprocessor
system, pass a stream of one-word messages from T, to T> using PUT and GET
instructions on a shared mailbox memory unit. Write program segments for T; and
T in assembly-language style that accomplish the same thing on a shared-memory
multiprocessor system that does not have a mailbox memory unit but does have a
TAS instruction as described in Section 12.6.1.

660 CHAPTER 12 ¢+ [.ARGE COMPUTER SYSTEMS

REFERENCES

l.

[N

10.
11.

M.J. Flynn. “Very High-Speed Computing Systems.” Proceedings of the IEEE.
vol. 54, December 1966, pp. 1901-1909.

D.L. Slotnick, “The Fastest Computer.” Scientific American, vol. 224, February
1971, pp. 76-88.

D. Lenoski. et al.. “The Stanford DASH Multiprocessor,” Computer, vol. 25, March
1992, pp. 63--79.

J. Kuskin, et al.. “The Stanford FLASH Multiprocessor.” Proceedings of the 21 st

Annual International Symposium on Computer Architecture, Chicago, April 1994,
pp. 302-313.

A. Agarwal. et al., "The MIT Alewife Machine: Architecture and Performance.”
Proceedings of the 22nd Annual International Symposium on Computer Architec
ture, Santa Margherita Ligure, Italy. June 1995. pp. 2-13.

. Z.G. Vranesic, M. Stumm, D.M. Lewis. and R. White, “Hector: A Hierarchically

Structured Shared-Memory Multiprocessor.” Computer, vol. 24, January 1991,
pp. 72-79.

R. Grindley, et al., “The NUMAchine Multiprocessor,” Proceedings of the 2000
International Conference on Parallel Processing, Toronto. Ont.. August 2000,
pp. 487-496.

- W.J. Dally and P. Song. “Design of a Self-Timed Multicomputer Communica-

tion Controller” Proceedings of the 1987 International Conference on Computer
Design, October 1987, pp. 230-234.

D. Gustavson. “The Scalable Coherent Interface and Related Standards Projects,”
[ELE Micro, vol. 12, January 1992, pp. 10-22.

IEEE Local Area Standard 802, 1EEE, 1985.

G.M. Amdabl, “Validity of the Single Processor Approach to Achieving Large-
Scale Computing Capabilities,” Proceedings of AFIPS Spring Joint Computer
Conference. Atlantic City, NJ, April 1967, pp. 483—485.

D. Culler, J.P. Singh, and A. Gupta, Parallel Computer Architecture — A Hard-
ware/Sofnware Approach, Morgan Kaufmann, San Francisco, CA. 1998.

. G.S. Almasi and A. Gottlieb, Highlv Parallel Computing, 2nd ed., Benjamin-

Cummings, Redwood City, CA, 1994.

14. K. Hwang, Advanced Computer Architecture, McGraw-Hill, New York, 1993,

. H.S. Stone, High-Performance Computer Architecture, 3rd ed.. Addison-Wesley.

Reading. MA. 1993.

. D. Tabak, Multiprocessors, Prentice-Hall, Englewood Cliffs. NJ, 1990,

